Numerical Optimal Control of Parabolic Pdes Using Dasopt

نویسندگان

  • LINDA PETZOLD
  • PHILIP E. GILL
  • KIHONG PARK
چکیده

This paper gives a preliminary description of DASOPT, a software system for the optimal control of processes described by time-dependent partial differential equations (PDEs). DASOPT combines the use of efficient numerical methods for solving differential-algebraic equations (DAEs) with a package for large-scale optimization based on sequential quadratic programming (SQP). DASOPT is intended for the computation of the optimal control of time-dependent nonlinear systems of PDEs in two (and eventually three) spatial dimensions, including possible inequality constraints on the state variables. By the use of either finite-difference or finite-element approximations to the spatial derivatives, the PDEs are converted into a large system of ODEs or DAEs. Special techniques are needed in order to solve this very large optimal control problem. The use of DASOPT is illustrated by its application to a nonlinear parabolic PDE boundary control problem in two spatial dimensions. Computational results with and without bounds on the state variables are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Predictive Control for Nonlinear Parabolic Partial Differential Equations

In this study, the optimal control problem of nonlinear parabolic partial differential equations (PDEs) is investigated. Optimal control of nonlinear PDEs is an open problem with applications that include fluid, thermal, biological, and chemically-reacting systems. Model predictive control with a fast numerical solution method has been well established to solve the optimal control problem of no...

متن کامل

THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S

In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.

متن کامل

A splitting method for fully nonlinear degenerate parabolic PDEs

Motivated by applications in Asian option pricing, optimal commodity trading etc., we propose a splitting scheme for fully nonlinear degenerate parabolic PDEs. The splitting scheme generalizes the probabilistic scheme of Fahim, Touzi and Warin [13] to the degenerate case. General convergence as well as rate of convergence are obtained under reasonable conditions. In particular, it can be used f...

متن کامل

Error Estimates for Discontinuous Galerkin Time-Stepping Schemes for Robin Boundary Control Problems Constrained to Parabolic PDEs

We consider fully discrete finite element approximations of a Robin optimal boundary control problem, constrained by linear parabolic PDEs with rough initial data. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for...

متن کامل

Numerical Solution of Differential Riccati Equations Arising in Optimal Control for Parabolic PDEs

The numerical treatment of linear-quadratic regulator problems on finite time horizons for parabolic partial differential equations requires the solution of large-scale differential Riccati equations (DREs). Typically the coefficient matrices of the resulting DRE have a given structure (e.g. sparse, symmetric or low rank). Here we discuss numerical methods for solving DREs capable of exploiting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007